Moringa oleifera Lam (Moringaceae) is a highly valued plant, distributed in many countries of the tropics and subtropics. It has an impressive range of medicinal uses with high nutritional value. Different parts of this plant contain a profile of important minerals, and are a good source of protein, vitamins, β-carotene, amino acids and various phenolics. The Moringa plant provides a rich and rare combination of zeatin, quercetin, β-sitosterol, caffeoylquinic acid and kaempferol. In addition to its compelling water purifying powers and high nutritional value, M. oleifera is very important for its medicinal value. Various parts of this plant such as the leaves, roots, seed, bark, fruit, flowers and immature pods act as cardiac and circulatory stimulants, possess antioxidant, antipyretic, antiinflammatory, antiinfectious, antibacterial and antifungal activities, and are being employed for the treatment of different ailments in the indigenous system of medicine, particularly in South Asia. This review focuses on the detailed phytochemical composition, medicinal uses, along with pharmacological properties of different parts of this multipurpose tree. Copyright © 2006 John Wiley & Sons, Ltd.

Keywords: Moringa oleifera; phytomedicine; food plant; medicinal uses; pharmacological properties; natural coagulant.

INTRODUCTION

Moringa oleifera Lam (syn. M. ptreysperma Gaertn.) is one of the best known and most widely distributed and naturalized species of a monogeneric family Moringaceae (Nadkarni, 1976; Ramachandran et al., 1980). The tree ranges in height from 5 to 10 m (Morton, 1991). It is found wild and cultivated throughout the plains, especially in hedges and in house yards, thrives best under the tropical insular climate, and is plentiful near the sandy beds of rivers and streams (The Wealth of India, 1962; Qaiser, 1973). It can grow well in the humid tropics or hot dry lands, can survive destitute soils, and is little affected by drought (Morton, 1991). It tolerates a wide range of rainfall with minimum annual rainfall requirements estimated at 250 mm and maximum at over 3000 mm and a pH of 5.0–9.0 (Palada and Changl, 2003).

Moringa oleifera, native of the western and sub-Himalayan tracts, India, Pakistan, Asia Minor, Africa and Arabia (Somali et al., 1984; Mughal et al., 1999) is now distributed in the Philippines, Cambodia, Central America, North and South America and the Caribbean Islands (Morton, 1991). In some parts of the world M. oleifera is referred to as the ‘drumstick tree’ or the ‘horse radish tree’, whereas in others it is known as the kelor tree (Anwar and Bhangar, 2003). While in the Nile valley, the name of the tree is ‘Shagara al Rauwaq’, which means ‘tree for purifying’ (Von Maydell, 1986). In Pakistan, M. oleifera is locally known as ‘Sohanjna’ and is grown and cultivated all over the country (Qaiser, 1973; Anwar et al., 2005).

Moringa oleifera is an important food commodity which has had enormous attention as the ‘natural nutrition of the tropics’. The leaves, fruit, flowers and immature pods of this tree are used as a highly nutritious vegetable in many countries, particularly in India, Pakistan, Philippines, Hawaii and many parts of Africa (D’souza and Kulkarni, 1993; Anwar and Bhangar, 2003; Anwar et al., 2005). Moringa leaves have been reported to be a rich source of β-carotene, protein, vitamin C, calcium and potassium and act as a good source of natural antioxidants; and thus enhance the shelf-life of fat containing foods due to the presence of various types of antioxidant compounds such as ascorbic acid, flavonoids, phenolics and carotenoids (Dillard and German, 2000; Siddhuraju and Becker, 2003). In the Philippines, it is known as ‘mother’s best friend’ because of its utilization to increase woman’s milk production and is sometimes prescribed for anemia (Estrella et al., 2000; Siddhuraju and Becker, 2003).

A number of medicinal properties have been ascribed to various parts of this highly esteemed tree (Table 1). Almost all the parts of this plant: root, bark, gum, leaf, fruit (pods), flowers, seed and seed oil have been used for various ailments in the indigenous medicine of South Asia, including the treatment of inflammation and infectious diseases along with cardiovascular, gastrointestinal, hematological and hepatorenal disorders.
Moringa oleifera is rich in compounds containing the simple sugar, rhamnose and a fairly unique group of compounds called glucosinolates and isothiocyanates (Fahey et al., 2001; Bennett et al., 2003). The stem bark has been reported to contain two alkaloids, namely morininge and moriningine (Kerharo, 1969). Vanillin, β-sitosterol [14], β-sitostenone, 4-hydroxymellin and octacosanoic acid have been isolated from the stem of M. oleifera (Faizi et al., 1994a).

Purified, whole-gum exudate from M. oleifera has been found to contain l-arabinose, -galactose, -glucuronic acid, and l-rhamnose, -mannose and -xylose, while a homogeneous, degraded-gum polysaccharide consisting of l-galactose, -glucuronic acid and l-mannose has been obtained on mild hydrolysis of the whole gum with acid (Bhattacharya et al., 1982).

Flowers contain nine amino acids, sucrose, d-glucose, traces of alkaloids, wax, quercetin and kaempferat; the ash is rich in potassium and calcium (Ruckmani et al., 1998). They have also been reported to contain some flavonoid pigments such as alkaloids, kaempferol, rhamnetin, isorqueries and kaempferitrin (Faizi et al., 1994a; Siddhuraju and Becker, 2003).

Antihypertensive compounds thiocarbamate and isothiocyanate glycosides have been isolated from the acetate phase of the ethanolic extract of Moringa pods (Faizi et al., 1994a). The cytokinins have been shown to be present in the fruit (Nagar et al., 1982). A new O-ethyl-4-(α-L-rhamnosyl)benzyl carbamate [11]
together with seven known bioactive compounds, 4(α-L-rhamnosyloxy)-benzyl isothiocyanate [3], niazimicin [4], 3-O-(6'-O-oleyl-β-D-glucopyranosyl)-β-sitosterol [15], β-sitosterol-3-O-β-D-glucopyranoside [16], niazirin [12], β-sitosterol [14] and glycerol-1-(9-octadecanoate) [13] have been isolated from the ethanol extract of the Moringa seed (Guevara et al., 1999). Figure 1 shows the structures of selected phytochemicals from Moringa.

Lately, interest has been generated in isolating hormones/growth promoters from the leaves of M. oleifera. Nodulation of black-gram (Vigna mungo L.)
Table 2. Sterol composition (grams per 100 g of fatty acids) of the M. oleifera oils

<table>
<thead>
<tr>
<th>Sterol</th>
<th>Anwar and Lalas and Tsaknis, 2002</th>
<th>Tsaknis et al., 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>Not reported</td>
<td>0.10</td>
</tr>
<tr>
<td>Brassicasterol</td>
<td>Not reported</td>
<td>0.06</td>
</tr>
<tr>
<td>24-methylenecholesterol</td>
<td>1.49</td>
<td>0.08</td>
</tr>
<tr>
<td>Campesterol</td>
<td>16.00</td>
<td>15.29</td>
</tr>
<tr>
<td>Campestanol</td>
<td>Not reported</td>
<td>0.33</td>
</tr>
<tr>
<td>Δ^3-campestanol</td>
<td>0.50</td>
<td>Not reported</td>
</tr>
<tr>
<td>Stigmasterol</td>
<td>19.00</td>
<td>23.06</td>
</tr>
<tr>
<td>Ergostadienol</td>
<td>Not reported</td>
<td>0.35</td>
</tr>
<tr>
<td>Clerosterol</td>
<td>1.95</td>
<td>1.22</td>
</tr>
<tr>
<td>Stigmastanol</td>
<td>1.00</td>
<td>0.84</td>
</tr>
<tr>
<td>β-sitosterol</td>
<td>46.65</td>
<td>43.65</td>
</tr>
<tr>
<td>Δ^7-avenasterol</td>
<td>0.96</td>
<td>Not detected</td>
</tr>
<tr>
<td>Δ^8-avenasterol</td>
<td>10.70</td>
<td>11.61</td>
</tr>
<tr>
<td>28-isoavenasterol</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>Δ^{14} Stigmastadienol</td>
<td>Not reported</td>
<td>0.39</td>
</tr>
<tr>
<td>Δ^{15} Stigmastanol</td>
<td>Not reported</td>
<td>0.85</td>
</tr>
</tbody>
</table>

has been shown to increase vigorously with the application of an aqueous-ethanol extract (Bose, 1980) of M. oleifera leaves, although the nature of the active ingredient is still unknown. Moringa leaves act as a good source of natural antioxidant due to the presence of various types of antioxidant compounds such as ascorbic acid, flavonoids, phenolics and carotenoids (Anwar et al., 2005; Makkar and Becker, 1996). The high concentrations of ascorbic acid, oestrogenic substances and β-sitosterol [16], iron, calcium, phosphorus, copper, vitamins A, B and C, α-tocopherol, riboflavin, nicotinic acid, folic acid, pyridoxine, β-carotene, protein, and in particular essential amino acids such as methionine, cystine, tryptophan and lysine present in Moringa leaves and pods make it a virtually ideal dietary supplement (Makkar and Becker, 1996).

The composition of the sterols of Moringa seed oil mainly consists of campesterol, stigmasterol, β-sitosterol, Δ^7-avenasterol and clerosterol accompanied by minute amounts of 24-methylenecholesterol, Δ^7-campestanol, stigmasatanol and 28-isoavenasterol (Tsaknis et al., 1999; Anwar and Bhanger, 2003; Anwar et al., 2005; Table 2). The sterol composition of the major fractions of Moringa seed oil differs greatly from those of most of the conventional edible oils (Rossell, 1991). The fatty acid composition of M. oleifera seed oil reveals that it falls in the category of high-oleic oils (C18:1, 67.90%–76.00%). Among the other component fatty acids C16:0 (6.04%–7.80%), C18:0 (4.14%–7.60%), C20:0 (2.76%–4.00%), and C22:0 (5.00%–6.73%) are important (Tsaknis et al., 1999; Anwar and Bhanger, 2003; Anwar et al., 2005).

Moringa oleifera is also a good source of different tocopherols (α-, γ- and δ-); the concentration of those is reported to be 98.82–134.42, 27.90–93.70, and 48.80–71.16 mg/kg, respectively (Anwar and Bhanger, 2003; Tsaknis et al., 1999).

MEDICINAL USES AND PHARMACOLOGICAL PROPERTIES

Moringa oleifera also has numerous medicinal uses, which have long been recognized in the Ayurvedic and Unani systems of medicine (Mughal et al., 1999). The medicinal attributes (Table 1) and pharmacological activities ascribed to various parts of Moringa are detailed below.

Antihypertensive, diuretic and cholesterol lowering activities

The widespread combination of diuretic along with lipid and blood pressure lowering constituents make this plant highly useful in cardiovascular disorders. Moringa leaf juice is known to have a stabilizing effect on blood pressure (The Wealth of India, 1962; Dahot, 1988). Nitrile, mustard oil glycosides and thiocarbamate glycosides have been isolated from Moringa leaves, which were found to be responsible for the blood pressure lowering effect (Faizi et al., 1994a; 1994b; 1995). Most of these compounds, bearing thiocarbamate, carbamate or nitrile groups, are fully acetylated glycosides, which are very rare in nature (Faizi et al., 1995). Bioassay guided fractionation of the active ethanol extract of Moringa leaves led to the isolation of four pure compounds, niazinin A [1], niazinin B, niazimicin [4] and niazinin A + B which showed a blood pressure lowering effect in rats mediated possibly through a calcium antagonist effect (Gilani et al., 1994a).

Another study on the ethanol and aqueous extracts of whole pods and its parts, i.e. coat, pulp and seed revealed that the blood pressure lowering effect of seed was more pronounced with comparable results in both ethanol and water extracts indicating that the activity is widely distributed (Faizi et al., 1998). Activity-directed fractionation of the ethanol extract of pods of M. oleifera has led to the isolation of thiocarbamate and isothiocyanate glycosides which are known to be the hypotensive principles (Faizi et al., 1995). Methyl p-hydroxybenzoate and β-sitosterol (14), investigated in the pods of M. oleifera have also shown promising hypotensive activity (Faizi et al., 1998).

Moringa roots, leaves, flowers, gum and the aqueous infusion of seeds have been found to possess diuretic activity (Morton, 1991; Caceres et al., 1992) and such diuretic components are likely to play a complementary
role in the overall blood pressure lowering effect of this plant.

The crude extract of Moringa leaves has a significant cholesterol lowering action in the serum of high fat diet fed rats which might be attributed to the presence of a bioactive phytoconstituent, i.e. β-sitosterol (Ghasi et al., 2000). Moringa fruit has been found to lower the serum cholesterol, phospholipids, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL) cholesterol to phospholipid ratio, atherogenic index lipid and reduced the lipid profile of liver, heart and aorta in hypercholesteremic rabbits and increased the excretion of fecal cholesterol (Mehta et al., 2003).

Antispasmodic, antiulcer and hepatoprotective activities

M. oleifera roots have been reported to possess antispasmodic activity (Caceres et al., 1992). Moringa leaves have been extensively studied pharmacologically and it has been found that the ethanol extract and its constituents exhibit antispasmodic effects possibly through calcium channel blockade (Gilani et al., 1992; 1994a; Dangi et al., 2002). The antispasmodic activity of the ethanol extract of M. oleifera leaves has been attributed to the presence of 4-[(α-1-rhamnosylxy)benzyl]-O-methyl thiocarbamate [3] (trans), which forms the basis for its traditional use in diarrhea (Gilani et al., 1992). Moreover, spasmyltic activity exhibited by different constituents provides pharmacological basis for the traditional uses of this plant in gastrointestinal motility disorder (Gilani et al., 1994a).

The methanol fraction of M. oleifera leaf extract showed antitumorogenic and hepatoprotective effects in rats (Pal et al., 1995a). Aqueous leaf extracts also showed antiulcer effect (Pal et al., 1995a) indicating that the antiulcer component is widely distributed in this plant. Moringa roots have also been reported to possess hepatoprotective activity (Ruckmani et al., 1998). The aqueous and alcohol extracts from Moringa flowers were also found to have a significant hepatoprotective effect (Ruckmani et al., 1998), which may be due to the presence of quercetin, a well known flavonoid with hepato-protective activity (Gilani et al., 1997).

Antibacterial and antifungal activities

Moringa roots have antibacterial activity (Rao et al., 1996) and are reported to be rich in antimicrobial agents. These are reported to contain an active antibiotic principle, pterygospermin [8], which has powerful antibacterial and fungidal effects (Ruckmani et al., 1998). A similar compound is found to be responsible for the antibacterial and fungidal effects of its flowers (Das et al., 1957). The root extract also posses antimicrobial activity attributed to the presence of 4-α-rhamnosloyl benzyl isothiocyanate [3] (Ellert et al., 1981). The aglycone of deoxy-niazimicine (N-benzyl, S-ethyl thioformate) [7] isolated from the chloorgen fraction of an ethanol extract of the root bark was found to be responsible for the antibacterial and antifungal activities (Nikkon et al., 2003). The bark extract has been shown to possess antifungal activity (Bhatnagar et al., 1961), while the juice from the stem bark showed antibacterial effect against Staphylococccus aureus (Mehta et al., 2003). The fresh leaf juice was found to inhibit the growth of microorganisms (Pseudomonas aeruginosa and Staphylococcus aureus), pathogenic to man (Caceres et al., 1991).

Antitumor and anticancer activities

Makonnen et al. (1997) found Moringa leaves to be a potential source for antitumor activity. O-Ethyl-4-(α-1-rhamnosloyxy)benzyl carbamate [11] together with 4-(α-1-rhamnosloyxy)-benzyl isothiocyanate [3], niaziminin [4] and 3-O-(6′-O-oleoyl-β-d-glucopyranosyl)-β-sitosterol [15] have been tested for their potential antitumor promoting activity using an in vitro assay which showed significant inhibitory effects on Epstein-Barr virus-early antigen. Niaziminin has been proposed to be a potent chemopreventive agent in chemical carcinogenesis (Guevara et al., 1999). The seed extracts have also been found to be effective on hepatic carcinogen metabolizing enzymes, antioxidant parameters and skin papillomagenesis in mice (Bharali et al., 2003). A seed ointment had a similar effect to neomycin against Staphylococcus aureus pyodermia in mice (Caceres and Lopez, 1991).

It has been found that niaziminin [9 + 10], a thio-carbamate from the leaves of M. oleifera, exhibits inhibition of tumor-promoter-induced Epstein–Barr virus activation. On the other hand, among the isothiocyanates, naturally occurring 4-[(4′-O-acetyl-α-1-rhamnosloyxy) benzyl] [2], significantly inhibited tumor-promoter-induced Epstein–Barr virus activation, suggesting that the isothiocyanato group is a critical structural factor for activity (Murakami et al., 1998).

Other diverse activities

Moringa oleifera has also been reported to exhibit other diverse activities. Aqueous leaf extracts regulate thyroid hormone and can be used to treat hyperthyroidism and exhibit an antioxidant effect (Pal et al., 1995a; 1995b; Tahiliani and Kar, 2000). A methanol extract of M. oleifera leaves conferred significant radiation protection to the bone marrow chromosomes in mice (Rao et al., 2001). Moringa leaves are effective for the regulation of thyroid hormone status (Tahiliani and Kar, 2000).

A recent report showed that M. oleifera leaf may be applicable as a prophylactic or therapeutic anti-HSV (Herpes simplex virus type 1) medicine and may be effective against the acyclovir-resistant variant (Lipipun et al., 2003). Table 1 depicts some common medicinal uses of different parts of this plant. The flowers and leaves also are considered to be of high medicinal value with anthelmintic activity (Bhattacharya et al., 1982). An infusion of leaf juice was shown to reduce glucose levels in rabbits (Makonnen et al., 1997).

Moringa oleifera is coming to the forefront as a result of scientific evidence that Moringa is an important source of naturally occurring phytochemicals and this provides a basis for future viable developments. Different parts of M. oleifera are also incorporated in various marketed health formulations, such as Rumalaya and...
Septilin (the Himalaya Drug Company, Bangalore, India), Orthoherb (Walter Bushnell Ltd, Mumbai, India), Kupid Fort (Pharma Products Pvt. Ltd, Thayavur, India) and Livospin (Herbas APS Pvt. Ltd, Patna, India), which are reputed as remedies available for a variety of human health disorders (Mehta et al., 2003).

Moringa seeds have specific protein fractions for skin and hair care. Two new active components for the cosmetic industry have been extracted from oil cake. Purisoft™ consists of peptides of the *Moringa* seed. It protects the human skin from environmental influences and combats premature skin aging. With dual activity, antipollution and conditioning/strengthening of hair, the *M. oleifera* seed extract is a globally acceptable innovative solution for hair care (Stussi et al., 2002).

WATER PURIFYING ATTRIBUTES OF *M. OLEIFERA* SEED

Moringa seeds as coagulant

Moringa seeds are one of the best natural coagulants discovered so far (Ndagibengesere and Narasiah, 1998). Crushed seeds are a viable replacement of synthetic coagulants (Kalogo et al., 2000). In Sudan, seed crude extract is used instead of alum by rural women to treat the highly turbid Nile water because of a traditional fear of alum causing gastrointestinal disturbances and Alzheimer’s disease (Crapper et al., 1973; Miller et al., 1984; Martyn et al., 1989; Muhibi, 1994).

Moringa seeds are very effective for high turbidity water and show similar coagulation effects to alum (Muhibi and Evison, 1995b). The coagulation effectiveness of *M. oleifera* varies depending on the initial turbidity and it has been reported that *M. oleifera* could reduce turbidity by between 92% and 99% (Muhibi and Evison, 1995b). *Moringa* seeds also have softening properties in addition to being a pH correctant (alkalininity reduction), as well as exhibiting a natural buffering property in addition to being a pH correctant (alkalinity and diuretic activities of *M. oleifera* seed, these studies could inhibit the replication of bacteriophages. The antimicrobial effects of the seeds are attributed to the antimicrobial peptides are thought to act directly upon microorganisms and result in growth inhibition. Antimicrobial peptides are thought to act by disrupting the cell membrane or by inhibiting essential enzymes (Silvestro et al., 2000; Suarez et al., 2003).

Moringa seeds also possess antimicrobial properties (Olsen, 1987; Madsen et al., 1987). Broin et al. (2002) reported that a recombinant protein in the seed is able to flocculate Gram-positive and Gram-negative bacterial cells. In this case, microorganisms can be removed by settling in the same manner as the removal of colloids in properly coagulated and flocculated water (Casey, 1997). On the other hand, the seeds may also act directly upon microorganisms and result in growth inhibition. Antimicrobial peptides are thought to act by disrupting the cell membrane or by inhibiting essential enzymes (Silvestro et al., 2000; Suarez et al., 2003).

Moringa seeds also possess antimicrobial properties (Olsen, 1987; Madsen et al., 1987). Broin et al. (2002) reported that a recombinant protein in the seed is able to flocculate Gram-positive and Gram-negative bacterial cells. In this case, microorganisms can be removed by settling in the same manner as the removal of colloids in properly coagulated and flocculated water (Casey, 1997). On the other hand, the seeds may also act directly upon microorganisms and result in growth inhibition. Antimicrobial peptides are thought to act by disrupting the cell membrane or by inhibiting essential enzymes (Silvestro et al., 2000; Suarez et al., 2003).

Moringa seeds as biosorbent

Moringa seeds could be used as a less expensive biosorbent for the removal of cadmium (Cd) from aqueous media (Sharma et al., 2006). The aqueous solution of *Moringa* seed is a heterogeneous complex mixture having various functional groups, mainly low molecular weight organic acids (amino acids). These amino acids have been found to constitute a physiologically active group of binding agents, working even at a low concentration, which because of the ability to interact with metal ions is likely to increase the sorption of metal ions (Broin and Schuurmans, 1988). The proteaceous amino acids have a variety of structurally related pH dependent properties, generating a negatively charged atmosphere and play an important role in the binding of metals (Sharma et al., 2006).

FUTURE PROSPECTS

So far numerous studies have been conducted on different parts of *M. oleifera*, but there is a dire need to isolate and identify new compounds from different parts of the tree, which have possible antitumor promoters as well as inhibitory properties. Although preliminary studies are under way in different laboratories to use the antispasmodic, antiinflammatory, antihypertensive and diuretic activities of *M. oleifera* seed, these studies...
should be extended to humans in view of the edible nature of the plant. *Moringa* roots and leaves have been used traditionally to treat constipation. Studies to verify these claims need to be carried out in the light of the reported antispasmodic activities, which are contrary to its medicinal use as a gut motility stimulant. Earlier studies on the presence of a combination of spasmodogenic and spasmylytic constituents in different plants used for constipation (Gilani *et al.*, 2000; 2005a; Bashir *et al.*, 2006) might be of some guidance in designing experiments in which the presence of antispasmodic constituents at higher doses are explained as a possible mode to offset the side-effects usually associated with high dose of laxative therapy. Similarly, the known species differences in the pharmacological actions of medicinal plants (Ghayur *et al.*, 2005; Ghayur and Gilani, 2006) may also be taken into account when planning studies involving contradictory results.

Food plants are considered relatively safe as they are likely to contain synergistic and/or side effect neutralizing combinations of activities (Gilani and Atta-ur-Rahman, 2005). *Moringa oleifera*, known to be rich in multiple medicinally active chemicals, may be a good candidate to see if it contains effect enhancing and/or side-effects neutralizing combinations. Medicinal plants are relatively rich in their contents of calcium channel blockers (CCBs) which are known to possess a wide variety of pharmacological activities such as antihypertensive, hepatoprotective, antinfective, antiasthmatic, antispasmodic and antiarthroreal (Stephens and Rahwan, 1992; Gilani *et al.*, 1994b; 1999; 2005b; Yaeesh *et al.*, 2006; Ghayur *et al.*, 2006) and it remains to be seen whether such activities reported to be present in *Moringa oleifera* have a direct link with the presence of CCBs.

Niazimicin, a potent antitumor promoter in chemical carcinogenesis is present in the seed; its inhibitory mechanism on tumor proliferation can be investigated by isolating more pure samples. The mechanism of action of *M. oleifera* as prophylactic or therapeutic anti-HSV medicines for the treatment of HSV-1 infection also needs to be examined.

The available information on the α-, β- and γ-tocopherol content in samples of various parts of this edible plant is very limited. β-Carotene and vitamins A and C present in *M. oleifera*, serve as an explanation for their mode of action in the induction of antioxidant profiles, however, the exact mechanism is yet to be elucidated. β-Carotene of *M. oleifera* leaves exerts a more significant protective activity than silymarin against antibacterial induced toxicity. It would be interesting to see if it also possesses hepatoprotective effect against other commonly used hepatotoxic agents such as CCl₄ and galactosamine, which are considered more suitable models and close to human viral hepatitis (Gilani and Janbaz, 1995; Yaeesh *et al.*, 2006).

Although *Moringa* leaves are considered a best protein source, it still has to be shown whether or not this protein source could compete with the more common protein sources in highly productive growing or milk-producing ruminants.

Many studies have also been conducted on the performance of *Moringa* seeds as an alternative coagulant, coagulant aid and in conjunction with alum for treating waste water. Therefore, it is important to identify the active constituents of *Moringa* seed for a better understanding of the coagulation mechanism. Reports on the antimicrobial effects of the protein purified from *M. oleifera* are very rare.

Since this plant naturally occurs in varying habitats, it is naive to expect a great magnitude of variation in the concentration and composition of chemical ingredients in different parts of the tree. However, the extent to which the chemical composition varies in populations adapted to varying habitats is not known. Thus, detailed studies are required to examine this aspect.

In view of its multiple uses, the *M. oleifera* plant needs to be widely cultivated in most of the areas where climatic conditions favor its optimum growth. In this way, a maximum yield of its different useable parts could be achieved to derive the maximal amount of commodities of a multifarious nature for the welfare of mankind.

REFERENCES

